
Acta Cryst. (1979). A35, 1 

Ewald Dynamical Diffraction Symposium 

Over 250 scientists from four continents gathered at the 
University of Oklahoma on 23 March 1978 to honor 
Professor Paul P. Ewald in his 90th year with a special, 
day-long, Dynamical Diffraction Symposium. Recent 
developments in the applications of dynamical diffrac- 
tion theory, created by Professor Ewald in 1917, were 
presented in a series of eight invited papers. It is note- 
worthy that his theory has only begun to have wide 
impact within the last twenty years, as experimental 
techniques and other theorists have caught up with it. 
The first paper was presented by Professor Ewald, who 
received standing ovations before he commenced and 
after he completed his talk. 

It is now well known that Ewald's discussion of his 
doctoral thesis with Max von Laue led to ideas which 
played a significant part in the discovery of X-ray 
diffraction by von Laue, Friedrich and Knipping. 
Ewald then worked out much of the early theory of 
such diffraction, including the concept of the reciprocal 

lattice. Professor Ewald, with his wife Ella (who also 
attended the meeting) and their four children fled Nazi 
Germany in the 1930's and went to Cambridge in 1937, 
then to Queen's College, Belfast in 1939, and finally to 
the Polytechnic Institute of Brooklyn in 1949, where he 
remained until 1959. The Ewalds now live in Ithaca, 
New York. 

The Dynamical Diffraction Symposium was a 
special part of the American Crystallographic Associa- 
tion meeting for 1978. The invited speakers were asked 
to submit manuscripts based on their talks for possible 
publication in Acta Crystallographica as a group, in 
homage to Professor Ewald. Each manuscript received 
was accorded normal editorial and refereeing treatment. 

J. M. COWLEY 
R. A. YOUNG 
Chairmen, 
Dynamical Diffraction Symposium 
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Abstract Introduction 

The theory of the diffraction of X-rays by crystals was 
developed by Ewald as part of a unified study of the 
interaction of light of all wavelengths with crystals, 
beginning with the work for his 1912 thesis and 
extending to his papers in 1968. The formulation of the 
problem in terms of the interaction of electromagnetic 
radiation with a periodic array of dipoles is placed in its 
historical perspective and is compared with Laue's 
version based on the assumption of a continuous 
electron density distribution. The Borrmann effect, 
hinted at in 1917, is derived readily from consideration 
of the dispersion surface. 

* Editors" note: This summary of his contributions to crystal 
optics was prepared by Professor Ewald as a basis for his talk at the 
Oklahoma meeting and for private circulation. In response to 
insistent requests from the Editors, Professor Ewald has granted 
permission for the publication of the summary in full. 
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On this happy occasion of a symposium celebrating my 
ninetieth birthday may I be excused for giving a review 
of my own papers? The main reason for this is that 
very few have read my original papers. Yet 1 see some 
merits in them as compared to later expositions of the 
same subjects. Besides, my work has been attempting 
to establish the unity of classical optics throughout the 
entire range of wavelengths from infrared to X-rays. 
This general aspect has received little resonance. 

The papers I am going to comment on fall into two 
groups. There are four main papers under the title Zur 
Bergriindung der Kristalloptik (Foundations of Crystal 
Optics; Ewald, 1916a,b, 1917, 1937; quoted hereafter 
as Optics I-IV). Of these the first is a slight remodelling 
of my Munich PhD thesis of 1912 Dispersion und 
Doppelbrechung in Elektronengittern (Kristallen) [Dis- 
persion and Double Refraction in Lattices of  Electrons 
(Crystals)] (Ewald, 1912), while the later papers 
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develop the theory further, reaching a satisfactory 
generality in the fourth paper of the series. Surrounding 
this backbone of my work are shorter papers on topics 
of detail, some of which I shall mention when I have to 
comment upon them. 

The optical field from assumed dipole oscillations 

In 1910, when I began work on my thesis, there was no 
quantitative proof for the internal periodicity of 
crystals. My teacher Sommerfeld had the idea that a 
proof might be obtainable by investigating whether 
oscillating electrons or dipoles, when placed in an 
anisotropic periodic array, a lattice, would produce 
observable double refraction by the mere fact of that 
arrangement. It was hoped that if this were so, then the 
observed double refraction could be used to gain 
information on the internal structure of the crystals. 
Sommerfeld handed me the reprint of a paper by 
Planck (1902) on the theory of dispersion, and with 
that I went hiking up the Rhine Valley for the summer 
vacations. 

The paper by Planck was quite incomprehensible to 
me. I could not disentangle the 'incident wave', the 
'total field', and the 'field of excitation'. But I came to 
the conclusion that my first aim would be to find out 
what kind of field would be generated by the dipoles if 
they were set in motion by a plane optical wave 
travelling through the lattice with some unknown 
velocity q; that is, according to a 'wave of dipole 
excitation' described by a wave vector K whose length 
is v/q, where v is the frequency. Each dipole emits a 
spherical wavelet which travels away from it with the 
speed of light in vacuo,  c, or with a wave constant k 0 = 
v/c. Because fields can be simply superimposed, to find 
the sum of all wavelets is a purely wave-kinematical 
exercise. 

This summation kept me busy for about a year. 
Assuming an orthorhombic lattice with translations al, 
a2, a3, the positions of the dipoles are given by X~ = 
I l a I + l 2 a  2 + l 3 a 3 and each spherical wavelet proceeds 
according to the distance between the source and the 
field point x = x l a  I + x2a 2 + x3a3, namely r( l ,x )  = 
I ~ i  [(xi - li)ai] 2 }1/2. The irrationality of this expression 
prevents a straightforward summation. 

A first helpful suggestion came from Sommerfeld. He 
showed me the development of the function expressing 
a spherical wave, namely (~nr )exp (2n i k r ) ,  into an 
integral over the product of a Bessel function of the 
planar distance p and an exponential function whose 
argument is linear in the third coordinate x 3 or z. He 
suggested that if it were possible to linearize p by using 
a similar integral technique, then it would be easy to 
sum the wavelets. 

After weeks I found the proper integral technique 
and when I met Sommerfeld to show him this result, he 
said 'Wait, I also have to show you something' - and 

with that he showed me the same integral I had found. 
It is remarkable that neither of us spoke of the Fourier 
integral. At that time one spoke of Fourier develop- 
ments, mainly in cosine and sine series, and the Fourier 
integral, in spite of its having been known for a long 
time, was still a bit strange; the term Fourier transform 
had yet to be invented, or to be commonly used i n  
Germany. 

The field generated by the dipoles was now easily 
calculated; it kept step with the 'wave of dipole 
excitation'. 

The field of excitation and double refraction 

My triumph at arriving at this field did not last long. I 
was now confronted with the task of extracting from 
this field that part that came from any individual dipole 
for which one sought to establish the motion. For it 
seemed obvious that a dipole would not be activated by 
its own field, but only by the fields radiated to its 
position by all the other dipoles. This, certainly, was the 
assumption upon which Planck and H. A. Lorentz 
based their theories of dispersion. The extraction of one 
dipole field seemed, however, hopeless because it was 
thoroughly mixed up with all others. Here a remark of 
Debye (at the time Sommerfeld's assistant) at a ski 
meeting in Mittenwald helped. He recalled a method 
Riemann had used in a similar case. Debye said 'Take 
the expression for the total field, get the denominator of 
the sum into the argument of an exponential function 
by introducing a new integration, and then, by inter- 
changing summation and integration you obtain as the 
integrand a O function. To this you can apply the O 
transformation formula, and that will once more allow 
you to recognize the contribution of the individual 
dipole'. The method worked! I could now apply the 
field of excitation to the individual dipole and relate to it 
the amplitude of oscillation by the dipole's only 
physical constant, its polarizability. 

There resulted the following situation: the optical 
field generated by the dipole oscillations had to be such 
that it just sustained these very oscillations. This con- 
dition could be fulfilled by the proper choice of the 
assumed wave vector K of the optical field, and with it 
of the refractive index n = L KI/k  0. I called the situation 
obtained in this way one of 'dynamical balance'; since 
the work of Hartree it is now called a 'self-consistent' 
regime. 

I was now able to conclude my thesis by a numerical 
calculation of the double refraction of a dipole lattice. 
On the recommendation of P. von Groth I used the 
axial ratios of anhydrite. The result was" no correlation 
between calculated and observed principal refractive 
indexes; however, indexes and double refraction of the 
same order of magnitude as observed; furthermore, the 
correct angular dependence of the optical properties as 
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given by the various crystal-optical surfaces. Thus the 
characteristic optical properties of crystals were 
caused, at least partly, by the anisotropy of their 
internal arrangement. 

I often feel embarrassed when the now generally 
accepted method of summation of potentials in crystals 
is given my name. True, I extended it later to non- 
orthogonal axes and I gave an explanation of the way it 
produces very rapid convergence - but essentially the 
method seems to go back to Riemann. 

valid for all wavelengths and that his question could be 
easily discussed, but that I was preoccupied with 
finishing the write-up of my thesis and would have to 
leave it to him. 

This concludes the report on my thesis which was 
handed in early in 1912 and published later in that year. 
The same material was slightly shortened and brought 
up to date when it was republished as Optics I in 
AnnaIen der Physik of 1916. 

General insights gained in the thesis 

My thesis brought with it several innovations for the 
then accepted theory of dispersion. This appelation 
was, in a way, a misnomer. Dispersion in the strict 
sense is the spreading of a pencil of light into a 
spectrum; it results from the dependence of the 
refractive index on the frequency, itself a consequence 
of the variation of the polarizability of the resonators 
with frequency. This dependence is nowadays the main 
objective of the quantum theory of dispersion which is 
based on our knowledge of the atom. How the 
polarizability affects the passage of light through a 
body is a second, now often neglected, aspect of the old 
designation 'theory of dispersion'. This part would 
better be called 'theory of light propagation'. Both the 
speed of light in a medium and its variation with 
frequency are internal properties of the medium. There 
was therefore in my thesis no room for the intro- 
duction of an 'incident wave' which played a role in the 
previous theories. In fact, my work established that 
selecting the proper phase velocity was the condition 
required for obtaining a self-consistent state of an 
optical wave in a medium containing resonators. This 
state was a free vibration of the medium in the same 
sense that in mechanics one speaks of the free 
vibrations of an unbounded string, plate or any other 
system where the internal forces balance and no 
external force is required. 

Both the older theories and mine are essentially 
linear, which means that fields can be superimposed 
without their interaction. How then was it explained by 
the older theory that an incident wave falling from out- 
side on a medium bounded by a plane surface could not 
be detected inside the medium? It would have phase 
velocity c, would not be refracted, and would 
thoroughly destroy the self-consistent state inside the 
medium. My answer was: this wave does not enter the 
medium; it is destroyed at the surface by the mere fact 
of the limitation of the array of dipoles. 

As this statement was rather revolutionary, I was 
keen to get Laue's opinion on it. But his thoughts took 
another turn and he asked repeatedly 'What would 
happen in the case of very short waves?' I pointed out 
that the transformation of the optical potential was 

The optical potential in two forms 

Let me make the first achievement of my thesis more 
precise, although in a more modern form, because it 
contains the key to all later papers. 

Field quantities like the electric-field strength are best 
obtained by simple processes of differentiation from a 
vector potential which was introduced by H. Hertz in 
deriving the field of a single dipole of moment 

namely 
= P0 exp (--2rcivt), 

z(x) = (~/4=r) exp(2ztikor); 

(1) 

(2) 

here r is the distance of the fieldpoint x from the dipole 
and k 0 = v/c is the constant of wave propagation in free 
space. 

We have been considering dipole moments phased 
according to a progressive wave of an unspecified wave 
vector K; therefore, the amplitude P0 now becomes 
P0 exp [21ri(KX)], where X is the position of the dipole 
and (KX) is the scalar product of the two vectors. The 
distance from dipole to field point x is then r = Ix - X I 
and the total Hertz potential of the optical field at point 
x appears as a sum over all sources of wavelets, that is 
over the three integers (l~,12,l 3) contained in Xl: 

z ( x )  = 

Po exp ( j K X  t) 

4zrlx -- XI 
1 

e x p ( j k o l x -  Xll ) ( j = 2 ~ i ) .  (3) 

In its transformed shape the same z(x) is found to be a 
sum of plane waves: 

z(x) = v~ 1Y  Po/t4zF(KZh - k~)] exp[j (Khx)];  (3') 
h 

here the summation is extended over all points h = 
(hlb 1 + hzb 2 + h3b3) of the 'reciprocal lattice'; the 
wave vectors K h connect the 'tie point' T 
(Ausbreitungspunkt) to the points h of the reciprocal 
lattice, and the tie point is defined as the point --K 1, 
where K1 (which above was called simply K) is the 
assumed wave vector of the dipole phasing. The b i are 
the reciprocal vectors to the a i. 
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The transition from the source-conscious form (3) to 
the plane-wave form (3') can nowadays easily be made 
by applying the technique of Fourier transforms; in the 
original papers complex integrals were evaluated by 
the method of residues. 

The reciprocal lattice was not yet explicitly envisaged 
in the thesis; its importance became manifest only in 
connection with X-ray diffraction. Also it was sufficient 
to take the simplest model of a crystal for clarifying the 
optics, namely a simple orthorhombic lattice. 
Generalization to non-orthogonal axes occurs only in 
Optics III, while the restriction to a basis of a single 
dipole could be dropped only in Optics IV. 

The impact of Laue's discovery 

Laue, Friedrich and Knipping found X-ray diffraction 
in crystals round about Easter 1912. I had become an 
assistant in G6ttingen, and I first heard of the discovery 
some seven weeks later when Sommerfeld came to 
deliver a lecture on this discovery to the G6ttingen 
Physical Society. Scientific news travelled slowly in 
those days. 

The evening after Sommeifeld's lecture, I finally sat 
down to discuss the case of short wavelengths. It was 
hereby that the reciprocal lattice became an essential 
tool and that the 'sphere of reflexion' (Bragg) or 
'Ausbreitungskugel' was an obvious construction 
(Ewald, 1913). 

Naturally, interest soon became centered on X-ray 
diffraction. Methods of indexing had to be worked out. 
One of the early problems was why many more spots 
did not appear on the Laue diagrams. In a discussion of 
the original Laue diagrams of zinc blende which 
Sommerfeld prepared roughly for the second Solvay 
Conference in 1913 and which I worked out, this 
question was answered; here the concept and name of 
the structure factor appears for the first time. In 1914 
W. L. Bragg had succeeded in determining what he 
then called 'the terribly complicated' structure of 
pyrites, FeS 2, the first example of a cubic structure with 
non-intersecting trigonal axes and the second type 
involving a parameter. For the latter, Bragg found a 
value from the spectrometer readings. By considering 
the structure factor as a function of the parameter I 
derived from Friedrich's Laue photograph of pyrites a 
different and much more accurate value of the param- 
eter - in fact, this may be considered the first precision 
determination of a parameter (Ewald & Friedrich, 
1914). 

War service; the extinction theorem 

In August 1914 war broke out. The X-ray equipment 
was transferred from Sommerfeld's institute to a 

hospital for medical work, and I accompanied it. In 
1915 I was attached to the army and went, together 
with a mobile X-ray station, to the Lithuanian front. It 
took several weeks before the unit made its way from 
the Siemens factory in Berlin to K6nigsberg in East 
Prussia, where I was waiting for its arrival. During this 
period of forced leisure I returned to the nagging 
problem left over from my thesis, namely that of the 
cancellation of the incident field. 

In order to prove the extinction statement, I had to 
know the optical field generated by a 'half-crystal', that 
is by a lattice of phased dipoles filling only the space 
under the plane z = 0. This was again a problem of 
wavelet summation. I tackled it with the familiar 
methods of evaluating complex integrals by the method 
of residues. I stuck to the assumption of an ortho- 
rhombic lattice because then the integrals could be 
evaluated separately for the three orthogonal variables. 

The result of the summation was that the field inside 
the crystal consists of the same waves as in the 
unbounded crystal ('mesowaves'), but that each such 
wave is accompanied by a 'boundary wave' ('epiwave') 
of the same amplitude, opposite phase, wave constant 
k 0 (instead of I Khl) and wave vector Kh such that g h 
and K h have the same tangential component along the 
surface. The last condition is an expression of Snell's 
law of refraction: it assures that the traces of meso- and 
epiwave move along the surface of the half-crystal with 
the same speed, so that if extinction occurs at one point 
of the surface, it is true for all points. 

Besides the epiwave inside the half-crystal, there 
exists an outer epiwave whose wave vector g h is the 
mirror image of that of the inner epiwave with respect 
to the surface. 

For light, only the term 000 of the sums yields three 
ordinary plane waves, namely the mesowave and the 
two epiwaves, which form, respectively, the refracted, 
the reflected and the extinguishing waves. All other 
terms in the sums represent 'inhomogeneous waves' 
whose complex wave vectors have a real part directed 
along the surface and an imaginary part normal to the 
surface. The latter produces a rapidly decreasing 
amplitude along the wave front with increasing distance 
from the surface. For visible light this inhomogeneity is 
so strong that the amplitude diminishes from the top 
layer of dipoles to the next one at depth d by at least a 
factor of 1000. The inhomogeneous waves mediate the 
transition from the field outside the crystal to that 
inside; in fact, there exists a region just beyond the 
surface, namely 0 < z < d, where the description of the 
field can be given by the formulas for either the inside 
or the outside space. After cancellation of the incident 
wave, there remained the well known self-consistent 
optical field inside the crystal and the reflected wave 
outside. The Fresnel formulas for the amplitudes of 
these waves resulted. 

The investigation supported in all detail the ex- 
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tinction theorem for visible light. It proved invaluable in 
its more complicated application in the theory of X-ray 
diffraction. I was happy to mail the manuscript to 
Sommerfeld for publication as a sequal to the 1912 
thesis before my X-ray unit arrived in K6nigsberg 
(Ewald, 1916a,b). 

Theory of X-ray diffraction 

Hardly any fighting went on across the Dwina River in 
November 1915 when my car and I were installed in a 
makeshift hospital some 10 miles behind the front. 
Exhausted troops were sent there from the French front 
to recover - mostly old men no longer fit for active 
fighting and prone to break their brittle bones on the icy 
morass into which the few roads had been turned by the 
military traffic. I now had time to consider the 'case of 
short wavelengths' not in the purely geometrical sense, 
but as the dynamical problem of how an X-ray optical 
field could travel in the crystal. 

The first step was to recognize the importance of the 
'reciprocity theorem' which I had already stated in the 
paper written after Sommerfeld's lecture in G6ttingen. 
If n points of the reciprocal lattice lie on the sphere of 
reflection, then the corresponding n rays form an 
inseparable unit, in the sense that none of them can 
exist without engendering all others. Thus a bundle of 
plane waves takes the place of the single plane wave in 
the light case. In the unbounded medium this composite 
field has to be subjected to the condition of self- 
consistency. The adapter for achieving this is the choice 
of the length of the wave vector of one of the rays; by 
this, the length of all other wave vectors is determined, 
or as we now say, the common origin of these vectors, 
the 'tie point' T, is fixed. The refractive index for X-rays 
differs from 1 by only about one part in a million; this 
means that the difference in length between any of the 
wave vectors K h and the vacuum value k 0 is of that 
order of magnitude. There is no general refractive 
index; each of the n rays has its own. In spite of the 
nearly equal lengths of the wave vectors, their dif- 
ferences regulate the amplitudes of the waves according 
to the 'resonance factors' (K 2 - k2) -1 in the potential 
(3'). This all-important influence can be understood by 
a Fresnel zone argument: the smaller the difference (K~, 
-- k2), the less difference there is between the assumed 
phase velocity q of the dipole excitation and the velocity 
c with which the spherical wavelets travel; therefore, the 
greater is the number of dipole-containing planes which 
send their contributions approximately in the same 
phase to a field point x, and the greater is the build-up 
of their amplitudes. Thus in order to balance the 
amplitudes of the n co-existing beams, so that none 
gains or loses amplitude (and energy) from the other 
beams, the lengths of all wave vectors have to be finely 

adjusted, and with this adjustment the amplitude ratios 
of the n beams in a self-consistent mode are fixed. 

The simple geometrical expression for this intricate 
balancing is the 'surface of dispersion' on which the tie 
point must lie. The general equation of the surface is 
given in Optics III for the case of n co-existing rays. 
The restriction to an orthorhombic lattice has been 
dropped, but not that of having only one dipole per cell. 
The general properties of the surface are discussed. It is 
shown to consist of 2n sheets, corresponding to the 
number of amplitude components of n transverse 
waves. There are then 2n different modes of the optical 
field. The unrealistic condition of the kinematical 
theory, that for diffracted rays to exist the sphere must 
pass exactly through the points of the reciprocal lattice, 
is now softened to the condition of a close approach. 
Finally the important case of two rays is discussed in 
detail. 

In order to obtain results that can be checked by 
experiment the case of the half-crystal has to be 
treated upon whose surface a plane X-ray wave is 
incident. There are now n homogeneous waves forming 
the mesofield, each of them accompanied by an internal 
epiwave of phase velocity c whose wave vector Kh has 
the same component along the surface as the mesowave 
vector K h. In the outer_ space there are 'reflected' 
epiwaves whose vectors R, h are the mirror images of Kh 
across the surface, but their amplitudes are not the 
same. Besides, there are inhomogeneous waves travel- 
ling along the surface whose amplitude is restricted to 
the first few dipole layers. The condition of self- 
consistency inside the crystal can be fulfilled by super- 
imposing dynamically balanced proper modes with 
such amplitudes that in (n - 1) directions the internal 
epiwaves cancel and that in the remaining direction, 
chosen as (000), the sum of the internal epiwaves 
cancels the incident wave. This is achieved by super- 
imposing fields represented by 2n tie points T, T* . . . . .  
T 2n* situated on the 2n sheets of the surface of 
dispersion along the direction of the surface normal, 
each field taken with a suitable amplitude. The result is 
that in each direction of diffracted rays a bundle of 
plane waves of very slightly differing wave vectors K~, 
K~*, ..., K 2n* is propagated; these waves form beats 
depending on the depth below the surface. Energy is 
exchanged between the rays (Pendell6sung) and a 
group velocity for the propagation of energy through 
the crystal can be defined. 

The full solution was easy to establish in the case 
when all diffracted rays travel from the surface of 
incidence towards the interior ('Laue case'). It was 
shown that in this case all 2n intersections of the 
surface normal with the sheets of the surface of dis- 
persion are real, that the solution is fully determined, 
that the primary ray (000) at the upper surface takes 
over the energy of the incident ray and that the 
diffracted rays start with zero amplitude before taking 
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out energy from the primary ray. There is a perfect 
analogy to a system of n coupled pendulums one of 
which receives at time t -- 0 an impulse while the others 
are at rest. The initial energy is then transferred through 
the coupling to the other parts of the system, and if 
there is no damping beats will continue forever. The 
analogy of the spatial behavior of the diffracted rays 
and the time development of the motion of coupled 
pendulums has been stressed by me on many oc- 
casions. The method followed in the dynamical theory 
is the strict analogue to the theory of small oscillations 
in classical mechanics. 

In the non-Laue case at least one upwards-directed 
diffracted ray leaves the half-crystal by the surface 
upon which incidence occurs. This may be the directly 
reflected or any other diffracted ray. In either case this 
internal ray produces an equally strong epiwave only 
in the outer half-space. It does not produce a strong 
internal epiwave, and it therefore leads to no condition 
of annihilation in the interior. The amplitudes remain 
indeterminate. This dilemma is physically justified 
because of the unrealistic assumption that the half- 
crystal fills the entire lower half-space. Sufficient 
conditions are obtained for making the problem, and 
the answer, precise by assuming a second boundary 
plane parallel to the upper one, that is at depth D. The 
drawback of this assumption is that the answer now 
depends on the thickness D of the crystal plate and that 
it is complicated by the interference effects between the 
waves reflected at the upper and the lower boundaries, 
like in the theory of the Lummer-Gehrcke plate. In 
order to get rid of this unwanted complication and 
because in actual crystals the thickness D is rarely 
constant, I averaged over D. There resulted in the case 
of two rays the well known 'top hat' reflexion curve. 
This is, in fact, the curve already found by C. G. 
Darwin in 1913. It shows the angular region of complex 
wave vectors and therefore total reflexion, bordered by 
a falling-off intensity in the Lummer-Gehrcke regions. 
Prins (1930) refined the curve by including absorption 
and superimposing for the two cases of polarization 
and in due course this curve was confirmed with ever- 
increasing resolution on selected crystals. 

Comparison of my theory with Laue's version 

Laue's version of the theory dates from 1931 (Laue, 
1931), that is five years after wave mechanics had 
changed our ideas of the constitution of atoms and 
solids and two years after Bragg and West had shown 
the usefulness of Fourier methods in the determination 
of crystal structures. The starting point for Laue is the 
assumption that each cell of the crystal structure is 
filled with a continuous electron density and dielectric 
constant, and that Maxwell's equations can be applied 
to this medium. For the half-crystal a continuous 

boundary is assumed, across which the usual boundary 
conditions for the field can be used. 

It seems strange to transfer the concept of dielectric 
constant, derived as it is from large-scale experiments, 
to the spaces between atoms. True, H. A. Lorentz had 
shown in his theory of electrons how in a model 
medium containing only positive and negative point 
charges the material constants of the MaxweUian 
theory can be obtained by considering average values 
of fields over regions containing many point charges. 
But this kind of averaging is not applicable to the 
rapidly varying X-ray fields. A similar objection can be 
raised against the application of boundary conditions to 
electron-density and dielectric-constant distributions 
which protrude into the upper half-space. 

In contrast to this, the model I used, even if it may be 
less realistic, is that of an open structure: there is no 
closed boundary, the external field is superimposed up 
to any depth in the medium and the condition of self- 
consistency holds everywhere. It is logically the simpler 
model. 

In spite of the conceptual differences, Laue obtained 
the same results as I did. His assumption of the di- 
electric constant was justified by Kohler (1935) on 
the basis of wave mechanics. Schr6dinger's wave- 
mechanical perturbation theory also showed that each 
element of volume of electron density reacted to an 
optical field like a dipole; and with that the models 
became fundamentally the same, provided I could carry 
my approach through to a basis containing an arbitrary 
number of dipoles. I had achieved this already in 1925 
for the case of two rays, but not for the general case of 
an arbitrary number; Laue's theory and discussion did 
not go farther than this. 

My 'habilitation'; Borrmann effect 

When World War I neared its end I used my theory of 
X-ray diffraction as a thesis for being admitted as a 
lecturer at the University of Munich. Even though 
Sommerfeld thought that my speculations would never 
find an application, he accepted the thesis. I had to give 
a trial lecture and put up a number of statements which 
I was willing to defend against interventions by the 
faculty. I had lost contact with physics during the 
solitary work on my problem and found it difficult to 
formulate significant statements. The second of my 
statements was based on the insight I had gained from 
my work. It seemed rather strange at a time when 
absorption of X-rays was considered to be entirely 
conditioned by the amount of matter transversed. It 
read (in translation): In case the absorption of  X-rays 
like that of  light can be traced to a consumption of  
energy in the oscillations of  dipoles then under some 
circumstances diffracted X-rays will not suffer any 
weakening in an absorbing crystal. 
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This statement was based on my knowledge that the 
field for compensating the incident field would be 
produced by a dipole amplitude which would be smaller 
the closer the tie point lies to the 'Laue point', i.e. to the 
only point giving rise to diffracted rays according to the 
kinematical theory. This statement in December 1917 
is a prediction of the effect G. Borrmann discovered 
experimentally in 1941 (Borrmann, 1941); Laue 
deduced its laws while he was held 'at His Majesty's 
pleasure' in Farmhall at the end of the European war 
(Laue, 1949). In 1917 X-ray absorption, like emission, 
was known to be a typical quantum effect; therefore the 
carefully worded beginning of the statement. I forgot 
the statement even after Laue's explanation of the effect 
until some fifty years later I happened to come across a 
copy of the invitation to the inaugural meeting. 

Preliminary summary 

By 1918 the dynamical theory of X-ray diffraction had 
been successfully established, first for an orthorhombic 
lattice, later for a general lattice. The theory was, 
however, still restricted to a basis of a single point- 
dipole. No structure factor occurred. The general case 
of n rays had been treated, but only the case n = 2 had 
been discussed in sufficient detail to check with experi- 
ment. This comparison had to wait for many improve- 
ments in the resolution of the experimental methods 
and the availability of near-perfect crystals. 

Book and Handbook; amplification of the reciprocal 
lattice 

In 1921 I left Munich for a chair in theoretical physics 
at the Polytechnic School in Stuttgart. Besides assemb- 
ling a full course of lectures in the first years, I wrote a 
book: Kristalle und RSntgenstrahlen (Ewald, 1923). 
The way I treated the subject was broad and intro- 
ductory. Later on, I hated to read in it, but judging by 
the unexpected compliments from crystallographers of 
many nations and after many years had passed, it must 
have served its purpose well. Characteristically neither 
the dynamical theory, nor even intensity, is mentioned 
in the book; both were in my view subjects about which 
too little was known at the time. The book contained a 
list of all known structures which I meant to continue in 
a second edition. This became the origin of 
Strukturbericht. In spite of its rapid sale the book never 
achieved a second edition because I was soon writing a 
full and concise review of the subject for the Handbuch 
der Physik, which was more to my liking. The 1927 
edition of this report (Ewald, 1927) was followed in 
1933 by a second edition which was brought up to date 
(Ewald, 1933). 

The last manuscript I finished in Munich (Ewald, 
1921) was prompted by a request of the Editor of 
Zeitschriftfffr Kristallographie, Paul Niggli, as he took 
over from P. yon Groth. The 'polar lattice' had been 
used by the older morphologists only for determining 
the orientation of the normals to crystal faces with 
respect to a set of axes. Because of X-ray diffraction 
one now became interested both in the orientation and 
the spacing of atomic net planes. The spacing was the 
inverse of the spacing of a row of points of the 
reciprocal lattice passing through the origin; this 
relation required the 'polar axes' to be renormalized to 
'reciprocal axes' in the way Willard Gibbs had defined 
these, and the reciprocal lattice)formed by using these 
axes as translations. 

In crystal structures we were now confronted with 
motifs consisting of many atoms, repeated by the 
translations. In the obvious point-by-point description 
of the structure the coordinates of each atom are listed. 
Could not the structure also be described by referring 
only to atomic planes? This is a purely geometrical 
question, and the answer is: yes - but it was very 
surprising at the time. No new lattice points can be 
added to those of the reciprocal lattice for they would 
indicate irrational positions of net planes. But one can 
add 'weights' to the existing reciprocal-lattice points. 
These must be invariant against changes in the 
description of the structure, such as doubling an axis 
and the basis. To my astonishment the weights 
necessary to achieve invariance turned out to be 
identical with the structure factors! The entire row of 
reciprocal-lattice points passing through the origin 
suddenly acquired significance: their weights were the 
Fourier coefficients representing the sequence and 
population density of the atomic planes normal to the 
row. 

With this result my geometrically conceived exten- 
sion of the reciprocal lattice tied up with the suggestion 
by W. H. Bragg (1915) to use Fourier series and their 
coefficients in determining crystal structures. This 
method, first tried out by W. L. Bragg and West in 
1929 on diopside became more generally applied when 
the technique of summing Fourier series in two 
dimensions had been facilitated by the Beevers and 
Lipson strips in 1934, the same year in which A. L. 
Patterson showed what use can be made of intensities 
instead of the unknown Fourier amplitudes. This last 
problem had been dealt with already in my 1921 paper 
although in algebraic terms, anticipating convolution 
and stressing that only the differences of atomic 
positions are obtainable from the intensities. 

The Paris lectures 

In 1932 I returned once more to the dynamical theory 
on the occasion of a lecture series I gave at the Institut 
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Henri Poincar6 in Paris (Ewald, 1938). Here again I 
stressed the continuity of my approach for all parts of 
the spectrum, treating with greater care the deter- 
mination of the field of excitation. The equation of 
motion of a single isolated dipole requires a damping 
term because of the loss of energy by radiation. This 
can only come from the action of its own field on the 
dipole. By a more thorough discussion than in my 
previous papers the field radiated to a dipole forming 
part of a lattice from the other dipoles is shown exactly 
to cancel the damping term in the dipole's equation of 
motion. There is no loss of energy by radiation for the 
individual dipole in a lattice if it contributes to the self- 
propagating plane-wave optical field. This result was 
already found by H. A. Lorentz for a dipole in a 
periodic medium. The paper ends with the derivation of 
the crystal-optical surfaces, the 'surface of normals' for 
visible light and the 'surface of dispersion' for X-rays. 

O p t i c s  IV 

Up to this point the dynamical theory had been able to 
deal in a general way only with crystals having a basis 
of a single dipole. Already in 1925 I had solved the case 
of a general basis, but only for one diffracted beam 
(n = 2) (Ewald, 1925). For this most important case 
the result was that for a perfect crystal the diffracted 
intensity is proportional to I F  hl , where F h is the 
structure amplitude, and not as for the mosaic crystal 
to I Fhl  2. The reason for this result was published, but 
not the detailed derivation. 

In 1937 I could finally return to the general problem 
of an arbitrary basis and an arbitrary number n of 
diffracted rays. The difficulty of this generalization lies 
in the following fact: As long as there is only a single 
point-dipole at the origin of the crystal cell all vectors 
K h = K000 + h, where h is a lattice vector, describe the 
same oscillations of the dipoles. The difference of 
description lies only in interpolating a smaller or greater 
number of sinusoidal waves in the empty space between 
the dipoles, and this is physically irrelevant. If, 
however, a second dipole is placed somewhere inside 
the cell, then it will pick up a different phase according 
to each K h. For the scattering of one beam into another 
there will thus result a different phase relation between 
the atoms of the basis according to the value of h. Thus 
for each scattering process there exists a different 
moment of the entire basis. This is the vectorial 
structure amplitude 

Sh = Z pS exp [-j(hxS)l ( j  = 2zci); (4) 
$ 

the summation goes over all dipoles in the cell, each 
sort marked by an index s and shifted by x s from the 
origin of the cell. 

Self-consistency of the optical field now requires that 

S h =- ~ Ah_ i Si±K k2 (5) 
i=, 'K~-- k0 z' 

where 

A m = ~ (as /Va)  exp [--j(h m xS)] (v  a = volume of cell). 
$ 

(5') 
It will be seen that A m is nothing other than the Fourier 
coefficient in the development of the distributed 
polarizability in the cell.  S i ± K, is the part of the moment 
of the cell that is effective in producing a transverse 
optical field progressing in the direction of the wave 
vector K;. 

Equations (5) and (5') are linear homogeneous 
equations for the n structure amplitudes Sh; they can be 
solved only on condition that one of the vectors K be 
chosen properly. After splitting the S h into a component 
transverse to K h and another one parallel to it the con- 
dition of solubility takes the form of the vanishing of 
the product of two determinants. This is done in a 
general way for n rays, whereby the restriction that 
these be 'strong' rays becomes immaterial. Thus one 
should be able to take into account points of the 
reciprocal lattice lying inside or outside the sphere of 
propagation at some distance from its surface. This 
may be of value in discussing the optics of the ultrasoft 
X-ray region which forms the transition to light optics. 

Needless to say, the general determinantal condition 
leads to the old results if n = 2, and if n unlimited in the 
case of a single dipole basis. 

The enhanced Borrmann effect 

Borrmann & Hartwig (1965) discovered that when 
three strong rays coexist in a near-perfect Si or Ge 
crystal the absorption drops even below the value 
reached in the case of only two rays. The condition of 
coexistence limits this 'enhanced Borrmann effect' to a 
small angular region; thus when the crystal is rotated 
under preservation of the reflecting condition for one 
set of net planes then within the dark line on the film 
which is produced by the simple effect there will be 
found a small darker spot due to the enhancement. The 
simple interpretation of this spot is that for three beams 
the surface of dispersion approaches the Laue point 
even closer than that for two beams. This prompted the 
papers by Y. H6no and myself (Ewald & H6no, 1968; 
H6no & Ewald, 1968) [(I) and (II)]. In them the surface 
of dispersion was analytically and geometrically 
discussed for the special three-beam case observed. 
It is shown in (I) that for n = 3 one sheet of the 
surface of dispersion passes at a smaller distance from 
the Laue point than does any of the three surfaces for 
only two out of the three beams. Thus, without even 
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introducing absorption, the origin of the enhancement 
is manifest from the general resonance denominator 
(K~, -- k2) -1. In (II) absorption and atomic factors are 
introduced and a graphical and numerical rendering of 
the surface of dispersion is given for variable wave- 
length and, consequently, angular settings. Finally the 
effective coefficient of absorption,/terf, is given for two 
different three-beam cases in germanium for each of the 
six sheets of the surface of dispersion. The curves show 
/~efr as a function of 2/a for the cases n = 1, 2 and 3. 
They show strikingly to what extent a perfect crystal 
can become transmittant in one of its proper modes, 
while in others it becomes more opaque. The value of 
this analytical treatment lies in the general survey it 
provides, and as such it is satisfactory. On the other 
hand, it is labor saving to use computer methods in 
future cases. 

Retrospect 

I am lucky to have spent so many of my best years in 
doing research I have loved; in having been well 
prepared for Laue's discovery by my thesis work; by 
taking an active part in developing the theory of the 
subject; by gradually simplifying the mathematics and 
by arriving at an increasingly deeper understanding of 
the varied aspects of crystal optics. 

On the other hand, my interest always centered on 
the perfect crystal in which I saw the preferred material 
for exacting optical investigation. Herein lies a strong 
limitation, and an abstraction which in important 
aspects is contrary to nature. I am happy to see how 
others have been, still are, and will be carrying on 
beyond the limitations I set for myself. 
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Abstract 

The previous theory [Kato (1976). Acta Cryst. A32, 
458-466] is improved by taking into account the 
higher-order correlations of lattice phase factors. The 
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previous coupling constants in the energy-transfer 
equations have, in general, to be reduced. In the 
simplest case of non-absorbing crystals the reduction 
factor can be given as 

oo 

R = 1 + ( r 9  - I  y V~i+')(-xgx_y, 
j=l  

where x+_g is the kinematical diffraction amplitude per 
unit length for + g reflection, and F~ j) is the correlation 
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